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ABSTRACT

The purpose of this report is to examine several Kalman

filter algorithms that can be used for state estimation with a

multiple sensor system. In a synchronous data collection system,

the statistically independent data blocks can be processed in paral-

lel or sequentially, or similar data can be compressed before

processing; in the linear case these three filter types are opti-

mum and their results are identical. In multilateration radar

tracktng applications, the data compression method is shown to be

computationally most efficient, followed by the sequential process-

ing, the parallel processing is least efficient. These algori-

thms are described in detail and their results are compared with

a suboptimum tracking algorithw which processes only multiple

range measurements. A state estimate compression algorithm is

also described. Various radar measurement transformation formu-

las are listed. Algorithms for a nonsynchronous data collection

system are not examined in detail but possible approaches are

suggested.
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1. INTRODUCTION

Recent studies (Ref. 1,2) have generated renewed interest

in multistatic and multilateral radar systems. These systems

can improve target tracking accuracy using range measurements

from muitipLe radars rather than range and angle measurements

from a single radar. Preliminary simulated multi-radar estimates

(Ref. 3) have shown promising improvement when compared to cor-

responding single radar results.

The purpose of this note is to formulate the Kalman filter

configurations that can be applied to multiple netted-radar mea-

surement systems; this report also addresses the general filtering

problem for measurement systems with many simultaneous measure-

ments. In Section 2 the problem is aescribed in more detail.

The two main tools for this report are reviewed; the extended

Kalman filter for nonsynchronously collected measurements from

different locations in Section 3 and the transformation of one

measurement system tc another in Section 4. In Section 5 the

results of Sections 3, 4 are combined and the filter configura-

tions for various m.asurement systems are derived - some of their

advantages and disadvantages are discussed. Emphasis is on the

examination of ':ie parallel filter - all measurements arr pro-

cc sed simultaneously (parallel), the sequential filter-process-

ing blocks of uncorrelated measurements sequentially, and data

compression-compressing the data before processing. Estimate

compression combines the filter outputs - comparable to data
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compression. In Section 6 some numerical results are presented.

Four appendices are attached. They present radar measurement

transformation formulas, derivation of data and estimate compres-

sion equations, proof of filter equivalence, and computational

counts of various filter configurations.

2. PROBLEM STATEMENT

In the measurement system under consideration several ra-

ders at different locations make measurements of the same RV.

The accuracies of the individual radars are known, their sampling

times may or may not be synchronized or they may be -andom. Fig-

ure 2.1 shows a schematic of such a measurement system; the mea-

surement vector of each individual sensor i is subscripted. The

individual radars may be active (i.e., transmit and receive) or

passive (receive only). A system is defined multilateral if all

radars are active, multistatic if there is one active and several

passive radars. Special cases under consideration are trilater-

ation (as in RMP-74) w ,:h 3 active radars, or a bistatic measure-

ment systems with one active and several passive radars.

There does not exist an extensi-e literature for the multi-

ple measurement system as for the single observer. This report

describes and evaluates possible filter configurations. Particu-

lar emphasis is given to the multiple radar siting system in the

context of BMD for synchronized, non-synchronized, and random

measurement times. Some of the economics of implementing the

various filters will be discussed.
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Figure 2.1 schematic program of a multilateration radar system.
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i
Simplifying assumptions have been made including no wake

contamination, no association problem (occurring in a multitarget

environment), no sidelobe problem, etc. These problems will have

to be solved before aAy such system can be successfully imple-

mented.

3. THE EXTENDED KALMAN FILTER FOR TARGET TRACKING

In this section the formulation of the extended Kalman

filter is reviewed. Both nonlinear and linear cases are outlined.

Consider the RV dynamics that can be described by the n-dimen-

sional vector nonlinear differential equation

x(t) = f(x(t)) + n(t) ; x(O) =X (3.1)

where n(t) is a zero.-:-ean Gaussian white noise with covariance

Q(t) and x is Gaussian with mean x and covariance P The
0 0 0

measurements are collected (randomly) at discrete times in the

form

z(tk) = z = h(xk)+ vk ; Xk = x(tk) (3.2)
k k

where v is an m-dimensional zero-mean Gaussian white noise se- 15

quence with covariance RK.

It is assumed that (3.1) has a unique solution and can be

expressed in the discrete form associated with (3.2)

4



Xk= f (Xk At + w k=l,2, ...
k k- -l - k-i

where{wk jis an n-dimensional zero-mean Gaussian white noise

sequence with covariance Q= Q(tl,tk) and At t t
suec k k k+l' k k-i k k-1.

The extended Kalman filter associated with (3.1) and (3.2)

is stated below:

PREDICT CYCLE:

(State) xk+i/k fk(xk/k,Ltk) ; X (3.3)

f k+l
or Xk+!/k Xk/k +J f(x(T),T)dT (3.3a)

(Covariance) Pk+i/k A kPk/k A k + Qk ;Poi = Po (3.4)

where xk/j denotes the estimate of x at time tk based upon all

the data up to time t. and P denotes the covariance of x~k/j kj

A is the Jacobian matrix of f at x and At
k ~k k/k n k t*

Ak - lx 1x=x ( )

Xk/k

UPDATE CYCLE:

(State) Xk+l/k+l = xk+l/k + Kk+l (zk+1 - h(xk+l/k )(3.6)

T M

(Gain) Kk+1 +kHk+l(Hk+1Pk+/kHk+ I  k+ 1

(3.7)

5 M+



or Kk~ P H T R-
klk-i-/k+1 k+1 k+1 (3.7a)

(Covariance) P k+l/k+l -(I - K k+l H kl)P kl (3.8)

-1 T -or P =~/kl (P kl + H k R k+l H k ) (3.8a)

if P~ exists
k4-1/k

where H is the Jacobian matrix of h at xk/k

H 9h(3.9)

x~k+l/k

If the measurements are linear with respect to xk then

Eqs. (3.2) and (3.6) become

zk H x +v (.'

k k k k

and

x =x + K (z H x .(36)k+l/k+l k+l/k k+l k+1 k+l Xk+l/k

respectively.

4. TRANSFORMATION OF MEASUREM4ENTS

The need for a transformation of measurement arises, e.q.,

when the filter coordinate system is different from the

6A



measurement coordindte system. This is the case in particular

when several radars at different locations make measurements of

the same object.

In Section 3 the nonlinear measurement was presented of the

form

zk h(xk) + v (4.1)

Here we are concerned with a radar measurement at a different

location of the form

z= h*(x ) + vk (4.2)

where {v*} is an m-dimensional zero-mean Gaussian white noise
k*

sequence with covariance Rk. To use Eq. (4.2) in a filter de-

signed for Eq. (4.1) the measurement has to be transformed. As-

suming that the measurement can be transformed into the form of

Eq. (4.1) - in the deterministic case - zk computes to:

zk g(zk) (4.3)

For the stochastic case, Eq. (4.3) can be approximated as

zk = g(z k ) ^ h(xk) + Vk (4.4)

where {vk} is an m-dimensional zero bean Gaussian white noise

sequence with covariance

T
R =G R G (4.5)k k k k

-7
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Gk = (4.6)

z z* hzZ = h (Xk/k_)

and Xk/k 1 is generated as in the previous section Eq. (3.3) at

tk

After making the transformation of Eq. (4.3) the filter

of Eq. (3.2) can be used by correcting Rk as shown in Eq. (4.5).

The H matrix is computed via Eq. (3.9) - as indicated in Section

3 - or in two steps as,

H * ax(4.7)
z = h* (k/k-lx- k/k-1

It becomes clear, that the above transformation is independent

of the RV dynamics. In general, the approximation of Eq. (4.4)

is satisfactory only if the nonlinearities are small,

Three basic measurement transformations are considered in

this report:

I) R1 A1 E1  to R0 A0 E 0

II) R1 R2 R3  to R1 A1 E1

III) R R R to R A E1 R0 A0  0

8



Transformation I is used to convert the (R, A, E) data collected

from one radar site to another radar site or the origin. Trans-

formation II can be used to convert 3 range measurements from

three radars into RAE measurements - either to use the data for

existing RAE-filter inputs, or e.g., to evaluate the elevation

and azimuth accuracies of the RI , R2, R3 measuremenrs as compared

to the R, A, E measurement of a single radar. Transformation III

is a combination of I and II. The transformation formula and the

associated G matrices (of Eq. (4.6) ) are derived in Appendix A

for the three transformations.

5. FILTER ALGORITHMS FOR MULTIPLE SENSORS AND LOCATIONS

5.1 Introduction

In this section various Kalman filter algorithms for sen-

sors at multiple locations are presented. The major advantage

of such a multilaterated measurement system is the possibility

of obtaining more accurate data for the tracking filter. Using

the radar measurements from several different locations may re-

sult in a much smaller uncertainty volume. With the proper

geometry the angle measurements may become redundant - in the

sense, that the processing of the angle measurements does not

improve the estimation accuracy by much. Neglecting them in

such cases results in a considerable saving in computer resources

while sacrificing little in filter performance. Because of the
redundancy in this type of measurement system it also is less

vulnerable against outages (forced or otherwise.)

9



Various cases of data collection and filter configurations

will be considered. Both the synchronous (all sensors collect

data at the same time) and the nonsynchronous case (each sen-

sor works independently of the others) are evaluated. In multi-

lateration radar tracking system the collection could be either

synchronized or nonsynchronized. In a system of bistatic radars

only the data collection is necessarily synchronized.

The radars at different locations have different measure-

ment coordinate systems with respect to a fixed state (or state

estimate) coordinate system. The Kalman filter can be designed

to accommodate all measurement coordinate systems - or the mea-

surements must be transformed to fit a particular filter design

as discussed in Section 4. Both types of filter configurations

will be discussed.

In Section 5.2 three optimal (in the linear case) and one

suboptimal filter for the synchronous data collection case are L
suggested and investigated; the nonsynchronous case is treated

in Section 5.3. Also described is the possibility of prepro-

cessing the data to reduce the computational requirements. In

Section 5.4 the filter performance is evaluated when only a sub-

set of the data is processed and compared to the optimal case

for which all the data are processed.
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5.2 Synchronously Collected Data

Let Zk+l i denote the measurement taken at time tk+l from

i-th radar with a total of I radars, then

Zk+li = hi('k+l )+ k+li i=l....., I (5.1)

where {vk+l, i  is a white Gaussian noise sequence with zero

mean and covariance Rk+li. There are four options in process-

ing these measurements by a Kalman filter. They are discussed

individually below.

5.2.1 Parallel Filter

All measurment vectors may be used to form a new measure-

ment vector Zk+l .

Zk+l,

Zk+l,2

Zk+ 1  (5.2)

Zk+lI

If each zk+l i is an m-vector, then zk+l is an M=mxl vector

(otherwise M = i). If the measurement noise for different

j=11



radars are uncorrelated, the covariance of zk+l' Rk+l , is

,, 00 I .. •.1 0
Rk+l,1 1 I , I

I I I I
S...4----I--------4.- ----

0 I II I

Rk+l,21- -
I I

R - II (5.3)kkl IIRk+ 1 =1- - Ii I' ( 5.3 )
" I I Il

• I Il
• I I I

------------------------------......... I........

1 I I R ,

(5.4)

(Gain) Kk~ ~ =k+i/k+l k+l,i Rk+l'i(5)

HT1 T-i

(Covariance) p- = 1 + E HT  R- iH

kk.1,I

k+/k+l k+l/k i 1 Kk+l,i K+l,ih

(5.6) X

where Hk~ is the Jacobian matrix of hi(Xk ) at xki.

Notice that the inverse covariance matrix equation is used in

(5.6). This form is more convenient for discussing filter eauiv-

. alence. This algorithm is depicted in Figure 5.1.

-1-1

-zAj

k~l/~l kl/k ~l kl~i ~l~i k~lN



Zk+l,2
Xk+l/k+l

k+l/kIl

~k~iI k+l/k

~k+J/k

Figure 5.1 Parallel filter.
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5.2.2 Sequential Filter

Each measurement may be treated as 
a new measurement with

zero prediction time for i>l. The estimates may then be updated

sequentially. The update algorithm becomes

(Stae) k+l/k+l k+l/k i~ k+l,i

Xk~/klz h~/k (x/~ 0- ~/ (5.8)

Xk+l/k+l,i Xk+l/k+l,il1 +k+l,i

(z k+l,i -h (x k+l/k+l,i-l)) (5.9)

i = 1,..., T

(Gain) Kk i P HT
k~l~i k+l/k+l,i-l k+l,i

(H T -1

Hk+l,i Pk+l/k+l,i-l Hk+l,i + R k+l,i)

or K Pklk~~ H R~
k+l,i HT/~lik~r k+l,i

14



(Covariance) Pk+i/k+l,i Pk+i/k+l,i-i - gk+l'i H .

Pk+i/k+l,i-i (5.11)

-1 -1 T -

i =1,2, ...+ I (5.11a)
I

A P

Xk+I/k+1 Xk.l/k+l,I Pk+i/k+l k+l/k+l,I

~(5.12)

Notice that the i-th measurement is used to update the state

estimate at the i-th step. This algorithm is illustrated in

Figure 5.2.

5.2.3 Data Compression

All measurements may first be combined to form a pseudo- I
measurement (data compression). In this case, the filter only

needs to be updated once. If a weighted least square criterion

or a Bayesian estimation formulation is used, the combined

measurement z k+1 and covariance Rk+l are*

* For derivation, see Appendix B.

1.5
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IIM

Zk+ll Zk+1,2 Zk+l,I

"k~l/ k~lk+i,
=k+1,0 Filter k+l/k+1,l Filter Filter k1I+

k~l/kk~l/l~l. 1k+l/k+1l
=Pk+l/k+l,0 0Pkl/

Figure 5.2 Sequential filter.

16



Zk+ = Rk+ 1 ( R13)
k+l i=l k+l,i k4l,i

II
1 -i (5.14)R =Z Rk~
k .i k+l, i

In order to use (5.13) and (5.14) all measurement vectors have to

be transformed to a common coordinate system. The transformation

procedure is discussed in Section 4. Using the above results,

the update equations are unchanged as stated in (3.5), (3.6), and

(3.7). This algorithm is depicted in Figure 5.3.

5.2.4 Estimate Compression

Each radar may have its own filter and process its own

measurement. The resulting estimates are then combined (as out-

lined in Appendix B). However, since the Pij (Pij correlation

ot the estimates from the i-th and j-th filter) for i~j are

generally not available any compressed estimate is suboptimal and

no correct estimate of the covariance matrix exists. An algorithm

for estimate compression is illustrated in Fig. 5.4.

5.2.5 Algorithm Comparison

Four algorithms have been discussed above. In the case of

a linear system it zan be shown (see Appendix C) that the result-

ing estimates of parallel filter, sequential filter, and data

17
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Filter ITN-76"2. (5.4)

Zk+l,l

IP

22 i2_

QI
-4

Fiiter

Figure 5.4 Estimate compression.
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compression are identical, and optimal. In Table 5.1 a cost com-

parison is shown (in terms of multiplications per step). The

estimate compression method requires the most computations, it also

does not result in a least square estimate and is not optimal.

The data compression method is computationally more effi-

cient than all the others. Although it requires that all measure-

ments be transformed to a common coordinate, the filter needs

only to be updated once. The computation requirements between

parallel filter and sequential filter depend upon the dimension

of the state and the total number of measurements. Let n denote

the dimension of the state vector, m the dimension of the mea-

surement vector, and I the total number of measurements, it can

be seen from Appendix D that the sequential filter is more effi-

cient than the parallel filter.

The comparison of all algorithms is demonstrated in Table

5.1 for a particular example (n=7, m=9).

5.3 Randomly Collected Data

The filter prediction and update process is carried out

according to the availablility of new data set. Suppose at time

tk+1 that the only available data is from radar i and let it be
deoedb z~l n
denoted by z i and Rk+l,i the update is performed based upon

this available data.

The number of multiplications is derived in Appendix D.

20
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(State) Xk+l/k+1 = Xk+l ( k+l,i(zk+1  hi(xk+i/k))

(5.17)

T -i(Gain) K'k+li k+l/k+l k+l,i Rk+li (5.18)

-1 -1 T -1

(Covariance) Pk= Pk + Hk R H (5.19)k+1/k+l k+l/k +k+i k+1,i k+l,i

If the filter is restricted to accept data only in a fixed
measurement coordinate system zk+l, i and Rk+l,i must be first

transformed into that coordinate system. The resulting update

equations are the same as (3.5), (3.6), and (3.7). These two

cases are illustrated in Fig. 5.5.

The draw back of a nonsynchronous data collection system

is in its high computational requirements. This is caused by the

fact that the filter must be updated sequentially, and the data

compression scheme can not be applied.

Two alternatives exist. The first one is simply to insist

on a synchronous data collection system. This is possible if bi-

static radars are used or if sufficient communication exists be-

tween transmitters so that data can be collected synchronously.

The second alternative is to preprocess the data for time align-

ment. A polynomial data smoother could be used as a data pro-

cessor for data-time-alignment, similar to the one discussed in

(Ref. 4).

22



Zk+l, i

Xk+l/k ;iiter with i-th Xk+l/k+1
Radar Measurement - ,

Pk+1/k Equations Pk+ 1/k+ I

Figure 5.5-a Filter equipped with all measurement equations for
randomly collected data.

Xk+l/k k+1/k

Transformation
X -i From i-ti k Xk+l/k+l.~Radar to the r ilter . ... :i

Fixed Coordi,-nate Pk+i/lz+l

Figure 5.5-b Filter with a fixed measurement coordinate for
randomly collected data.
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5.4 Options of Processing all or Part of the Measurements

in a data collection system, part of the measurements may

be of poorer quality (low SNR) than the others. if the remaining

(high SNR) measurement still constitutes an observable system,

the noisy measurements may be neglected with trade-offs in compu-

tation and performance.

This situation is particularly true in a multilateration

tracking system. The range measurement accuracy is usually

better than that of the angle (cross-range) measurement for a

single radar. Several radars looking from different locations

may result in much improved uncertainty volume even if only range

measurements alone are used. When only range measurements are

processed in the filter, the computation requirements are reduced

over even the data compression method - which was the most effi-

cient filter in terms of computation. Two methods may be used

in applying multiple range measurements to a tracking filter.

(a) Range measurements from several measurement

locations (at least three) may be used to

form a set of pseudo-measurements (range and

angles) for a "virtual" radar. For proper

geometry the effective angle measurement

standard deviations can be considerably smaller

than those obtained in a conventional radar

system (of the order of 10- radian vs 10 - 3

radian) .

24
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_ (b) The range measurements may be directly

__ processed by the tracking filter without

going through the transformation illustrated

above. This Method uses less computation than

the method described in (a). A filter which

accepts range and angles will have to be modi-

fied to accept several ranges simultaneously.

In the case of a linear system and measure-

ments, it can be shown that there is no

difference in performance in using either

method. In the case of a nonlinear system

such as the RV tracking system, it is expected _-

that both methods will achieve close performance.

it will be shown in the numerical results that with proper

geometry,processing range measurements alone can achieve virtually

the same performance as processing all the measurements.

6. NUMERICAL RESULTS

The parallel, sequential and data compression filters were

tested ina RV sirdulation. The reentry geometry is shown in Fig.

6.1. The estimation results for these various nonlinear filters

are extremely close - for linear filters in other runs they were

shown to be equal. The statistics for the nonlinear filters are

identical.I

25
__'__ 

_ _



y MMi) " " L+1=A

(49.5, 49.5, 40.)

Geom. I

+40

RADAR 3

+20 -

(4.1, 4.1, 0) x(kM)

RADAR I RDAA 2 9.5.0,40.)

Gemi. xi

*20

-401
(4.1, 45.4, 0)

(for all radars: 3r M t ofU-fR) _

Figure 6.1 Reentry geometries 1, 11.
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In Figs. 6.2 - 6.5 the RMS position and velocity errors

are shown for 2 geometries for the following measurement configu-

rations:

Radar 1: RAE

Radars 1,2,3: Ri ; i=,2,3

Radars 1,2,3: (RA,E)i ; i=1,2,3

At low altitudes (<20 km) geometry I has smaller RMS errors; at I
higher altitudes (>20 km) geometry I seems favorable.

For the radar measurement accuracies used, the trilater- I
ation results (3 radars-range only) are better than the typical

single radar results (by a factor 2-5). The trilateration results
for 3 radars (R,A,E)i; i=1,2,3 show only marginal improvements

when compared to the 3 radar - range only - results. It should

be pointed out that the improvement due to trilateration will be

much greater if the range accuracy is improved or if the angle

accuracy of the single radar is reduced.

27J
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Figure 6.2 Position RMS error vs. altitude for geometry I.
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Figure 6.3 Position RMS error vs. altitude for geometry II.
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Figure 6.4 Velocity RMS error vs. altitude for geometry I
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Figure 6.5 Velocity RMS error vs. altitude for qeometry I.

31



I

REFERENCES

1. I. Kupiec, "Assessment of Miss-Distance Achievable by a
Trilateration Radar System," Project Report RMP-74, Lincoln
Laboratory, M.I.T. (in preparation).

2. J. E. Salah, private communications.

3. C. B. Chang and D. Willner, "Multilateration Tracking with
Monostatic and Bistatic Measurements," Project Report RMP-86,
Lincoln Laboratory, M.I.T. (5 April 1976).

4. Y. Bar-Shalom, "Redundancy and Data Compression in Recursive
Estimation," IEEE Trans. Automatic Control AC-18, 684-689,
(1973).

-Mawl

: 32



APPENDIX A

The Three Basic Measurement Transformations

(I) Transformation I: From (R1 ,A1,E 1 ) to (RoA 0 E0 )

Given (See Figure A.1):

Radar I at (xlyl,0) measures (R1,A1,E1)

Radar 0 at (0,0,0) measures (R ,A Eo )
0 0, 0

Transformation Formula:

22R o  [-, +Xl+Y2+2xlRlCOSElSinA +2YlRlCOSElC.OSA1 ]

- x 1 + R 1cosE 1 1in
A tan + R 1COSE1COSAl

E0 sin

The G - Matrix:
k

(a) xyz - System

x,y,z - from the predicted state vector Xk/kl

rl = [(Xl-X)2 + (yly)
= [x2+-2]

r O = y

= [^2 + "2]
R r1

[ + 2]
RO 0

33
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C= X(x-xl) + Yl (y-yl )

c 2 = xI(Y-yl) " yI(x-xl)

we have

91- [R1 +cli/R 0 R

/Rg12= c2o
AAAA

g 1 3  -zc/Rorl

g,= - c2 /R 1r
^2 11 /^2

922 [r 1 +Cl]
923 zc2/rlr2

10

[^ A

z z /r
932 = -

1 R

g32  ROg2r

0

933 = 1 - g13  "ro

0

(b) RAE - System

Ro,Ao,E - from the predicted state vector X
0 0 0 -Sk/k-i

r = R0 cosEO

z = R sinE
0 0

x = r 0 sinA0

y = r cosA
0 0

then apply the same formulas in (a) to obtain 2k .
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(II) Transformation II: From (RIR 2,R3) to (RJ,AI,E1)

Given (see Figure A. 2):

Radar I at (0,0,0) measures R. or (R1, A1 E1)

Radar II at (x2,y2 ,0) measures R2

Radar III at (x3 ,y3,0) measures R3

Transformation Formula:

R= R1

A =tan (y)
1 y

E =sin1R

2 2 2x = alRl+a2R2+a3R3+ao

2 2 2y b~ bR +b R +b R3>+b

= - (x2+y2)j

2 2
a1 = co [Y3-y2] ,a2= -Coy3, a3=Coy2 ' ao=c (Y3r2 Y2 r3)

2 2

b I = c o x2-x 3  b2= Co 3 , b3 = -Cox 2 , bo=C0 (x 2 r 3-x 3 r 2)

22 2 2 2 2
0 2Y3-x3Y2 r 2 x2 +Y2 , r3 =x3+y 3

The Gk Matrix:

(a) xyz - system
* A A

x,y,z from the predicted state vector Xk/k-1

^2 ^2
ro x y
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R1  r2 + 21
R= r z

1 0 J

2 = (x-x 2 ) + (y-y 2 ) + z

R2 + y 2 + z

3 = (^-3 '-y 3) +2

we have

gl1, q12 =0' 913 =0

AA A A2
= 2RI(aly - blx)/ro

= 2R2 (a2Y - b2x)/ro

g23  2R3 (a3Y - b3x)/r 0
A

931 (1-2alx-2blY) z
roz Rlr

010

2

932 AR 2 x b b2Y

g33 =  a 3 + by
z L

0

b) RAE - System
A A A A

R 1IAIE 1 - from the predicted vector Xk/k_1

A A

ro = RlCO E1
A A A

z=RlsinE 1

x =rosinA
1

36
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A' A A

y =r cosA

then apply the same formulas in (a) to obtain Gk.

(III) Transformation III: From (R1 ,R2 1 R3) to (RoTo,Eo)

Given (see Figure A.3):

Radar 0 at (0,0,0) measures (R ,A ,E
0 0 0

Radar I at (xl yl,0) measures R

Radar II at (x 2 ,y 2 ,0) measures R2

Radar III at (x3 ,y3 0) measures R3

Trdnsformation Formula:

e I  o O Y3 -Y 2 ], a 2= -e o [Y 3 -Yl ,a 3=c [Y 2 -Yl ]
b= [x 2 -x 3  ' b 2 =eo [x3-x 1 ] b 3 = -C[ X2 -xl]

2r 21
a = 0 [jy3-y) r2 -(y2-yl) r3

b = ( l) r2 21

[(x 2 -)r 3  (x -x ) r]
U o0- 2 3- 1 BXr2 '

x x-x I ) 3-yl (x 3 -xl)(y 2 -Yl+ o 2 (Y-l (x-l

2 2 2 2 2 2r 2 (x 2 -xl) + (y2-yl) , r 3  (x 3-x 1 ) + (y 3 -yl)

22 2 2

x = alRl+a 2 R2+a3 R3 +ao+Xl

I

' 2 +2yy

0I

x3



y bR+b R 2 +bR2 +1 1 2 2 3 R3 +y

[R2-x2-y2 1
Z = ROx _

The G Matrix:

(a) xyz - system
A A A

x,y,z - from the predicted state vector Xk/k_.

RO =1r+z[A -2+A y]

R1 (Xxl) 2 + (yy 1 )2 + 2

(yy 2  + A21

2  (x-x 2) 2 + (y-y2)

A F 2 A 2 + 2]

R3 (xx) + Y3)+ I
we have

1 [1+2axl+2blYlj Rg1ll 1 1 1 y /Ro

2R iax+by
g 2R 2 21 21JR

g = 2R aXl+bl R13 32R3 a3l ] /Ro
= [a bxI ^ 2

21 2RI ly-bl /ro

9 ~ a y-bDx/r
22 = 2R2 2ro 2 0

^2 [a ^ -b]^2
g23= 23 3Y-3 x / -

38
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_43 ̂ [1+2aI(xix) +-2bl (yl-Y) -z

r oz  r0R

2R rb *

g 3 2 = - 2 (x I - -y--- g 1 2
r z roR°
2R 3  ^ ^

-3

933 = r a3 (x 1 -x)+b 3 (y-y) 3- 91

0 r 0 R0

(b) RAE - System

RoAo,E - from the predicted state vector Xk/k,
00

r =RcosE
0 0 0

AA A A
z = RosinE

0 0

x r 0 sinA0

y = rocosA

then apply the same formulas in (a) to obtain Gk.
39
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ITN-76-21 (A.l)i

Target (x,y,z)

R0

(0,0,0) E 0
RADAR 0

A E ro (,v0
(x,y .0)

A

RADAR I (xl yl0)

Figure A.1 Measurement transformation I.
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ITN-76-21 (A. 2),

Target

(X , V, Z)

RR
1 R3

r2
WEO,) 2 1 2 O

(0;~. 0 )
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z i'rget TN-76-21 (A.3)I
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3
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(03 ,0300

SRADAR 
II I
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Figure A.3 Measurement transformation III.Ur
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APPENDIX B

Derivation of Data and Estimate Compression Equations

Let xi denote the measurement (or estimate) of x from the
i-th sensor (estimator) with mean x and covariance Pii. In addi-
tion, it is assumed that the correlation between x. and xj, ij,
is known and xi, i=l,...,N and x are all expressed in the same

coordinate, then

x. = x + n. (B.)-i - -i B.i

A weighted least square estimate of x from x.,i=l,...,N is the x

which minimizes

J (X Hx)Tp-(x IrX) (B.2)

Pll P2 ---

where P = P2 1 P2 2 --- P2NI

P PNI N2 - NN
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x

-41

H

I= an identity matrix with the same order as x. 
The

solution is

T- -l 1u B3

x~( P H) H P x(B3

(H TP-1 HI) =covariance of x(B.4)

If the order of x is n, then the dimension 
of P is (nNxnN). The

above equations require the inverse of a large 
size matrix. For

the case when P. =j 0 V i~ij, the above equations may be simfpli--

fied to
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N N -1S E N E N -ixi (B. 5)

E covariance of x (B.6)(i~l lz --

Notice that in this case the matrices to be inverted have dimen-

sion (nxn).

In the data compression case, the measurements are uncorre-

lated. Equations (B.5) and (B.6) are used for this purpose. For

the estimate compression case, the estimates are correlated. In

order to optimally use estimate compression, one has to

(a) Compute all correlations, P.. Vi=j3J

(b) Invert a large matrix, P.

Both are optimum, however the estimate compression is computation-

ally extremely inefficient.
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APPENDIX C

Proof of Filter Equivalence

In this Appendix, the equivalence of sequential filter,

parallel filter, and the filter using compressed data are shown.

It should be noted that they are equivalent only in the linear

case. The results for nonlinear systems such as RV tracking

should still be close to optimal. The prediction equations of

the three filters are the same. Only the equality of the update

equations need to be proven. The equations of the parallel fil-

ter will be used as the reference. All the other filters will

be .hown to be the same as the parallel filter. For convenience,

the update eauations of the parallel filter are restated below.

^ ^ I-k+l/k+l -k+l/k +  l Kk+li k+li

Hk+l,i xk+(/k )

(C l0
T -

(Gain) K -P H Rk+l,i k+l/k+l k+l,i k+l,i (C.2)

(Covariance) i + Z HT -i(Coaranc) k+i/k+l = k+i/k +  k+l'i Rl~i Hk+l,i

(C.3) a

The proofs are stated individually.
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(a) The equivalence of the sequential filter.

The covariance matrices can be easily shown to be the same.

Iterating (5.11a) I times yields

-' I
-l H R H1  (C.4)

k+l/k+lI +l/k i+l k+l,i Rk+l,i k+l,i

and
p-1 P-1

k+l/k+lI k+l/k+l

This is the same as (C.3). Next we show the state estimate equa-

tion. Substituting (5.8) and (5.9) to (5.7) and after a few

manipulations, we obtain

-i ^ 1-1 I
2Ek+i/k+l = Ek+I/k (I K k ~ HI - ~ ~ ~~i=lxl- Kkl'Hk+l') Kk+l'i

(z -H x-k+l,i k+l,i -k+l/k

+ H x ~' H (C.5)
k+l,I +l,i k+l,I Xk+l/k )

where I an identity matrix, and Nk+l,i is the gain defined by

(5.10), not (C.2). The are equal when i=I. Using the following

relation of the sequential filter,

Pk+i/k+l,i+l = (I K Kk+l,i+ 1 Hk+l,i+l )pk+/k+l,i  (C.6)
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then,

(I - Kk+lj Hk+l,j k+l,i
j =i+l

I (I - Kk+l,j Hk+l,j) (I- Kk+l,i+l Hk+li+l )
j=i+2

T R-

k+l/k+l,i k+l,i Rk+l,i

I T -1P
j=i+2 (I - Kk+l,j Hk+l,j) Pk+l/k+l,i+l Hk+l0i R

T -1
-P H T Rk+l/k+l,I k+l,i k+l,i

T -1
- P H Rk+l/k+l k+l,i k+l,i

K of (C.2)
k+l,i

This completes the proof.

(b) The equivalence of the filter using compressed data.

In order to use the data compression method, all measure-

ments must be first transformed to a common coordinate, i.e.,

they must have the same measurement matrix. Let the measurement
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of the i-th sensor be denoted by Zk+lli the transformation by

T1  and the transformed measurement by Zk+li , then

k i kl, i

=T. 1i +T n (C.7)1 k+l,i Xk+l i k+l,i

and

Ti H k+l, i - Hk+l for all i=l, . I.

It should be noted that the transformation T. may not exist for

all i. They do exist however for the multistatic radar applica-

tion discussed in this report. The covariance of nk+l,i is

TR and that of T n is R+ =Ti  R i T The
k+l,i 1 k+l,i kli 1k+1,i i

compressed covariance is denoted by

Rk+l i k+li

ii
7 ~ T R T.(.8

Applying the above results to the filter covariance equations

yields
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-1-1 T T-11
k+/+ k+l/k +1H k+1 k+~ ~

-1 -T-1 -P + H R T H

k+1/k j k+1,i k+1,i k+l,i

This proves that the covariance propagates the same way. Next

we show the state estimate. Let Z k+ 1 denote the compressed data,

then

A A

H 1R (zk~ - H x
? kl/~l= k~/k+ k+l/kI- k+ k+1 k+ k+l k1 /

A T -1I
= Xk+1/k + Pk+1,k+1 k+1 R k~l (R k~l Z Ikli2+'

H= kl2k+,ik+i

A T -
-Ek-l/k k-i-i/ki- k =1 k±, - +1I

-lf -H ~ f

+A T R?-1 IH

2ikl/xk+1/k+l Hkl 'k+1,i k4-1,i k -~ /k
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E P T T -T -
-Ek+1/k k+1/k+l k+1,i T. i Ti k+1,i 'i

(Tz -T H x

1 -k+1.i i k+1,i ?Ek- -1/k

+ ~T -1

-H E )

Hk+1,.i k+1/k)

This completes the proof.
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APPENDIX D

Computational Efficiency of Various
Kalman Filter Configurations

The computational requirements of an algorithm can be esti-

mated by the number of multiplications per cycle. One cycle of

a Kalman filter can be divided into predict part (subscript p)

and update part (subscript u). Using the standard formula the

number of multiplications M is computed, assuming that the compo-

nents of the measurement are independent and taking advantage of

the symmetric matrices i.e., only the upper triangular matrix has

to be computed.

D.1 Predict Part

PAPAT +P = + Q + Q

A,P nxn
Product # of multiplications

T  n 3

PATn

x=Ax A(PAT) 2 (n+l)
^ ^ 2
Xnxl Ax n

_3 n2
M 3 n (n+l)
p 2
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D.2 Update Part

K = PH T(IIPHT + R)

H mxn' Pnxn' Rmxm

Product # of mult.
T2

PH n m

H (PH 1 .(nm + nm)

-] 2 3
( mxm f (m- m)

-1 2
(PH) nxm nmnxm mxm

P =P- K(HP) K(H1) 1(2

z = x lx nm

K(z - z) nm
K(z - z)

3 2 3
Mu  nm f(n+m)+3 + -(m -)
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D.2.1 Update via Inverse

P = (p- + HTR-1H)-

P H R = Diag.jrij
nxn mxn m

Product # of multiplications

T -1 2 3H R H 1nm + 2 nm

3 3p . 2.(n_n)

--1 3 3(P (n-n)

T -1 2K=P (HR n) m
nxn nxm

z = Hx , k(z - z) 2nm

3 7 4 3

Mui=nm (3 n + _-)+ (n3-n)

D.3 Data Compression

given: k m-dim, data sets zi  i=1, ... , k .
1) transform z. to z- coordinate system

0

2) transform diagnoal covariance matrices Ri

3) compress

54
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Product # of mult.
2

1) z. = G.. z. km1 11 1

2) R. G. R. GT k 1 (m+ 3 21= 1 2m 3

3) (Ri)-I (k+12 3_ m)S( (k+l) (m

4) E ( z) (k+l)m

S3 7 2 m2 72
Mm  (t k+ -) + m ( k+l) -m(k+l)

D.4 Estimate Compression-

given: k n - dim. estimates x., i=l,...,k
using only the P.. matrices (the Pij j3i matrices
are not availab14 the # of multiplications for
the compressed estimate is computed.

Product # of results
.2-3

(k+l) 3(n3-n
i li

-1-1 2
(EPi -(EP..-I xi) (k+l)n

2 2

ME (k+l)n .-(n 1) +n

-i
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